EE290 Guest Lecture
Chip Bringup

Daniel Grubb 3/11/21
Outline

- Bringup goals
- Bringup test setup
- Interacting with your chip and booting
- Lab equipment
- General advice
You sent off some polygons, what next?

- Don’t lose sight of your goals
- How do you know if the thing you made actually works?
- How do you get the bits from your computer to the chip itself?
- Bringup goals
 - Need to physically interface with the chip
 - Signs of life
 - Need to debug the chip
 - Clocks, resets, board, etc.
 - Demonstrate functionality
 - Run experiments
 - Make nice plots
- The process isn’t standard, but hopefully will give you some insight
Bringup Test Setup
What’s on your chip?

- Power
- Clock
- Reset
- Your modules
- PMU core / CPU0
- Top level interfaces
 - JTAG
 - SPI
 - Others
What’s on your board?

- FPGA connection
- Test points
- Clocking
- Power
- Other miscellaneous parts / quality of life
What’s on the FPGA/board?

- SD Card
- Lab computer
- Your computer
- Soft core (e.g., another Chipyard design)
- Your Chip
How do I talk to the chip?

- Access soft core on FPGA via UART
- Can use this to write GPIOs, push data to chip, and execute programs
- BootROM on chip
- Interrupt from the host
- Chip executes program
- Booting Linux on chip is more complicated
Lab Equipment

- Scope
- Clk generator
- Power supply
- DMM
- Soldering station
- Logic analyzer
- Others
 - RF equipment
 - Probe station
Basic Process

- Sanity check your setup
- Check signs of life
- Board debugging
 - Test points
 - Resets
 - Clocks (redundancies)
 - Power
- Use the lab equipment at your disposal
 - DMMs, scope, logic analyzer, etc.
 - Host FPGA
 - ILAs
- Run through your bringup sequence
- Run test programs
- Gather data
General Bringup Advice

- Run through your bringup sequence in simulation
 - Try to match exactly what you’re going to do in the real world
- Sanity check what you’re doing on the lab bench
 - Buzzing
 - Clocks
 - Resets
 - Test points
- When something goes wrong
 - Think hierarchically
 - Check simulations
- Label your boards so you know exactly what you’re testing
 - Meticulously record everything that you do in the lab
 - This will save you headaches...
Questions?